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 ABSTRACT     Through unbiased metabolomics, we identifi ed elevations of the metabolite 

2-hydroxyglutarate (2HG) in renal cell carcinoma (RCC). 2HG can inhibit 2-oxoglu-

taratre (2-OG)–dependent dioxygenases that mediate epigenetic events, including DNA and histone 

demethylation. 2HG accumulation, specifi cally the  d  enantiomer, can result from gain-of-function 

mutations of isocitrate dehydrogenase ( IDH1 ,  IDH2 ) found in several different tumors. In contrast, 

kidney tumors demonstrate elevations of the  l  enantiomer of 2HG ( l -2HG). High-2HG tumors demon-

strate reduced DNA levels of 5-hydroxymethylcytosine (5hmC), consistent with 2HG-mediated inhibi-

tion of ten-eleven translocation (TET) enzymes, which convert 5-methylcytosine (5mC) to 5hmC .  l -2HG 

elevation is mediated in part by reduced expression of  l -2HG dehydrogenase (L2HGDH). L2HGDH 

reconstitution in RCC cells lowers  l -2HG and promotes 5hmC accumulation. In addition, L2HGDH 

expression in RCC cells reduces histone methylation and suppresses  in vitro  tumor phenotypes. Our 

report identifi es  l -2HG as an epigenetic modifi er and putative oncometabolite in kidney cancer. 

  SIGNIFICANCE:  Here, we report elevations of the putative oncometabolite  l -2HG in the most common 

subtype of kidney cancer and describe a novel mechanism for the regulation of DNA 5hmC levels. Our 

fi ndings provide new insight into the metabolic basis for the epigenetic landscape of renal cancer. 

  Cancer Discov; 4(11); 1290–8. ©2014 AACR.                   
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 INTRODUCTION 

 One of the clearest examples of the role of metabolism in 

cancer is the recent identifi cation of oncometabolites, small 

molecules with putative oncogenic properties. Mutations of 

fumarate hydratase ( FH ), succinate dehydrogenase ( SDH ), and 

isocitrate dehydrogenase 1 and 2 ( IDH1/2 ) in tumors lead to 

elevated levels of fumarate, succinate, and 2-hydroxyglutarate 

(2HG), respectively ( 1, 2 ). In cells with  FH  and  SDH  mutations, 

precursor metabolites (fumarate and succinate) accumulate 
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due to loss of FH and SDH enzymatic activity. In the case 

of  IDH1  and  IDH2 , highly conserved mutation “hot spots” 

in DNA of tumors result in the formation of a “neoenzyme” 

that leads to elevated 2HG (specifi cally the  D  enantiomer) in 

gliomas and acute myeloid leukemias (AML), as well as other 

malignancies ( 2, 3 ). A unifying theme linking these three 

oncometabolites is their ability to inhibit a class of enzymes 

referred to as 2-oxoglutarate (2-OG)–dependent dioxygenases 

(2-OGD). Members of this enzyme family include prolyl 

hydroxylases (PHD), which are involved in the regulation of 

the transcription factor hypoxia-inducible factor-1α (HIF1α), 

histone demethylases, and DNA hydroxylases ( 4 ). In the case 

of succinate accumulation, feedback inhibition is a proposed 

mechanism, as succinate is a product of 2-OGD–catalyzed 

reactions. In the case of fumarate and 2HG, competitive inhi-

bition is the proposed mechanism due to structural similarity 

with the cofactor 2-OG. Collectively, these data suggest that 

metabolic perturbations in cancer can inhibit 2-OGD activi-

ties with potential effects on tumorigenesis. 

 Recent studies have focused on the ability of oncometabo-

lites to inhibit DNA hydroxylation by the ten-eleven transloca-

tion (TET) enzymes (TET 1–3), which convert 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC). The oxidation of 

5mc to 5hmC has been proposed to promote the demeth-

ylation of DNA, via either active or passive means ( 5 ). Alter-

natively, 5hmC has been proposed to be its own epigenetic 

mark with distinct effects on DNA architecture and gene 

expression ( 6 ). Despite these confl icting views, emerging data 

demonstrate reduced 5hmC levels in human cancer, as well as 

animal tumor models, indicating a role for 5hmC loss in car-

cinogenesis ( 7, 8 ). Further evidence for the role of 5hmC loss 

in malignancy is provided by the fact that  TET2  is commonly 

mutated in human myeloid malignancies, including AML, as 

well as other myeloid disorders ( 9, 10 ). 2HG can inhibit TET 

enzymatic activity and promote loss of 5hmC ( 11 ). These 

studies have primarily examined the role of the  D  enantiomer 

of 2HG ( D -2HG), which is markedly elevated in the setting 

of  IDH  mutations. Notably, both cell-free and  in vitro  studies 

demonstrate that the  L  enantiomer ( L -2HG) is more potent at 

inhibiting 2OGDs, including the TET enzymes ( 11, 12 ). 

 In this report, we demonstrate elevation of 2HG in clear-cell 

renal cell carcinoma (ccRCC), the most common histologic 

subtype of kidney cancer. In contrast with  IDH -mutant tumors, 

ccRCCs demonstrate elevations of  L -2HG. In concordance with 

the ability of 2HG to inhibit TET enzymatic activity, tumors 

with elevation of 2HG had reduced levels of 5hmC in genomic 

DNA. We provide evidence that reduced mRNA and protein 

expression of  L -2HG dehydrogenase (L2HGDH) in ccRCC 

promotes 2HG accumulation and 5hmC loss. Bioinformatic 

analysis demonstrates that copy-number loss is associated with 

reduced  L2HGDH  expression in ccRCC. L2HGDH reconstitu-

tion in RCC cells lowers  L -2HG, promotes 5hmC accumulation, 

and suppresses  in vitro  tumor phenotypes. Collectively, our data 

demonstrate a putative oncometabolite elevated in ccRCC with 

effects on the kidney cancer epigenome.   

 RESULTS 
 We analyzed 59 matched tumor/normal pairs using an 

unbiased metabolomics profi le (S. Sudarshan, manuscript in 

preparation) . This initial analysis identifi ed statistically sig-

nifi cant elevations of 2HG (greater than 5-fold) in ccRCC rela-

tive to normal renal parenchyma ( Fig. 1A ). However, multiple 

tumors demonstrated elevations of 2HG more than 10-fold 

higher than in normal tissue. Investigation for somatic muta-

tions in RCC using both the cBioPortal for Cancer Genom-

ics [to analyze The Cancer Genome Atlas (TCGA) datasets] 

and the Sanger Catalogue of Somatic Mutations in Cancer 

(COSMIC) database did not demonstrate any evidence for 

 IDH  mutations in ccRCC (data not shown). 2HG is known 

to occur in two enantiomers,  D ( R ) and  L ( S ). We therefore ana-

lyzed metabolite extracts from both high-2HG and low-2HG 

tumors via liquid chromatography/tandem mass spectrom-

etry (LC-MS/MS) for levels of each 2HG enantiomer ( Fig. 1B ). 

Of notable signifi cance is that the predominant enantiomer 

present in these cells is the  L  enantiomer ( Fig. 1B ). Analysis 

of high-2HG tumors demonstrated that the  L  enantiomer 

accounted for approximately 90% of the 2HG present in 

these tumors ( Fig. 1C ). We validated our fi ndings in a sepa-

rate cohort ( Fig. 1D ). Clinical information present on this 

cohort is provided in Supplementary Table S1. We therefore 

analyzed a panel of RCC lines for 2HG elevations, in addition 

to nontransformed renal epithelial cells HK-2 and HRE 152. 

Consistent with our tissue analysis, several RCC lines dem-

onstrated increased 2HG, with a predominant contribution 

made by the  L  enantiomer ( Fig. 1E ). Notably,  L -2HG elevation 

was found in cells both with and without alterations of  VHL , 

the most commonly altered gene in ccRCC. Analysis of tumor 

samples confi rmed  L -2HG elevation in tumors both with and 

without  VHL  coding mutations (Supplementary Table S2). 

Collectively, these demonstrate elevations of  L -2HG in ccRCC.  

 Elevated 2HG has been shown to inhibit TET enzymatic 

activity, thereby leading to reduced levels of 5hmC in the 

context of  IDH  mutation ( 11 ). We used an ELISA-based assay 

to quantitate absolute 5hmC levels. To validate the assay, we 

overexpressed the catalytic domains (CD) of TET1 and TET2 

in HEK-293 cells, in addition to catalytically inactive mutants 

(CM) of TET1 and TET2. Consistent with previous data ( 11 ), 

cultured cells, including HEK-293 cells, express low levels of 

5hmC ( Fig. 2A ). However, transient expression of the TET1 

or TET2 CD was able to raise 5hmC levels, whereas CM forms 

of either TET1 or TET2 could not ( Fig. 2A ). We therefore 

examined levels of 5hmC in the context of 2HG elevation. Con-

sistent with prior data,  L -2HG octyl-ester treatment reduced 

DNA 5hmC levels in HK-2 renal epithelial cells ( Fig. 2B ). We 

confi rmed increases in intracellular 2HG levels following ester 

treatment (data not shown). Tumors with elevated 2HG levels 

demonstrate signifi cantly reduced levels of 5hmC relative to 

matched normal tissue on ELISA analysis ( Fig. 2C , top). Dot-

blot assay with an antibody specifi c to 5hmC in DNA identifi ed 

that high-2HG tumors had reduced levels of 5hmC relative to 

normal kidney ( Fig. 2C , bottom). In contrast, 5hmC levels were 

not reduced in tumors with low 2HG levels ( Fig. 2D ). Collec-

tively, these data indicate that raised levels of 2HG in ccRCC 

are associated with 5hmC loss.  

 We next wanted to identify potential factors that pro-

mote  L -2HG accumulation in ccRCC.  L -2-hydroxyglutaric 

aciduria is an inborn error of metabolism linked to loss-

of-function mutations of the gene  L2HGDH  ( 13 ). Nota-

bly, several RCC lines had reduced mRNA and protein 
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expression of  L2HGDH  relative to nontransformed renal 

epithelial cells ( Fig. 3A and B ). We found that A498 and 

RXF-393 demonstrate elevated  L -2HG levels with concomi-

tant reduced L2HGDH mRNA/protein expression ( Figs. 1E  

and  3A and B ). These data prompted us to examine the 

relationship between  L -2HG levels and L2HGDH expression 

in patient samples. We analyzed  L2HGDH  mRNA expres-

sion in normal kidney, low– L -2HG tumors, and high– L -2HG 

tumors. Elevated  L -2HG tumors had a higher  L2HGDH  Δ C t   

( C t    L2HGDH  −  C t   RPLP0), indicating lower  L2HGDH  expres-

sion when compared with low– L -2HG tumors and normal 

kidney ( Fig. 3C and D ). Immunoblot analysis confi rmed the 

mRNA fi ndings, as primary tumors with elevated 2HG had 

reduced protein levels of L2HGDH relative to normal tissue 

( Fig. 3E ). Immunohistochemical analysis also demonstrated 

reduced L2HGDH expression in high– L -2HG tumors relative 

to normal kidney. Notably, proximal tubule cells, the likely 

cell of origin for ccRCCs, have prominent L2HGDH expres-

sion relative to distal tubule cells ( Fig. 3F ). We next examined 

whether reexpression of L2HGDH in RCC cells could lower 

 L -2HG levels. Using lentivirus, we stably expressed  L2HGDH  

cDNA in RCC cells and confi rmed expression by immu-

noblotting (Supplementary Fig. S1). L2HGDH expression 

signifi cantly reduced intracellular  L -2HG levels in A498 cells 

( Fig. 3G ). The  L2HGDH  locus is located on chromosome 

14q, a region commonly lost in ccRCC ( 14 ). We therefore 

examined the relationship between copy-number loss and 

gene expression alterations with Level 3 RNA sequencing data 

from The Cancer Genome Atlas. ccRCC tumors with loss of 

a single copy (i.e., loss of heterozygosity) were associated with 

signifi cantly reduced mRNA expression of L2HGDH com-

pared with diploid tumors ( Fig. 3H ). Collectively, these data 

demonstrate that reduced expression of L2HGDH promotes 

 L -2HG accumulation in ccRCC.  

 We next determined whether modulation of  L2HGDH  

expression could affect the levels of 2HG, as well as 5hmC 

levels. We therefore cotransfected HEK-293 cells with the 

TET1 CD (to raise 5hmC levels to a detectable range) and 

either  L2HGDH  siRNA or control siRNA. Immunoblotting 

confi rmed TET1 CD expression and knockdown of L2HGDH 

(Supplementary Fig. S2). Consistent with its role in L2HG 

metabolism, L2HGDH knockdown led to raised levels of 

 Figure 1.       l -2HG is elevated in RCC tumors and cell lines. Human kidney samples were obtained by surgical resection and metabolites were extracted 
for metabolite profi ling analysis by GC/MS analysis. A, 2HG was signifi cantly increased in primary tumor (tumor) compared with adjacent benign kidney 
tissue (normal). Inset graph is presented with smaller scale. B, high-2HG and low-2HG tumors were analyzed by tandem MS to resolve the enantiomeric 
 distribution of 2HG within these tumors. C, relative ratio of  d -2HG and  l -2HG against total 2HG in high-2HG RCC samples. Error bars, SEM. *,  P  < 0.05. 
D,  l -2HG levels were measured in another cohort of samples from a separate biorepository. E, enantiomeric resolution of 2HG in a panel of nontrans-
formed and transformed lines of renal origin. WT, wild-type.    
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cellular 2HG ( Fig. 4A , left). Concomitantly, we identifi ed 

decreased levels of 5hmC with L2HGDH knockdown, con-

sistent with the ability of L2HG to inhibit TET enzymatic 

activity ( Fig. 4A , right). Similar results were obtained in HK-2 

renal epithelial cells ( Fig. 4B  and Supplementary Fig. S2). 

As a complement to our knockdown approach, we overex-

pressed the TET1 CD and either control vector or  L2HGDH  

cDNA in HEK-293 cells. Immunoblotting confi rmed trans-

gene expression (Supplementary Fig. S3). Under basal culture 

conditions, L2HGDH overexpression had little impact on 

cellular 2HG levels, consistent with the fact that HEK-293 

cells express high levels of L2HGDH mRNA and protein 

levels (data not shown). We therefore challenged cells with 

esterifi ed  L -2HG (octyl-2HG) to raise intracellular levels of 

2HG. Following octyl-2HG challenge,  L2HGDH  cDNA over-

expression in HEK-293 cells led to reduced cellular 2HG 

levels relative to control cells, consistent with the role of 

L2HGDH in the metabolism of  L -2HG ( Fig. 4C , left). Con-

sistent with reduced 2HG levels, L2HGDH-overexpressing 

cells demonstrate increased 5hmC levels compared with 

vector control–transfected cells ( Fig. 4C , right). Consistent 

with these data, reexpression of L2HGDH in A498 cells led 

to an increase in 5hmC levels as compared with control vec-

tor ( Fig. 4D ). As noted, prior studies have demonstrated that 

 L -2HG can inhibit histone demethylases and hence promote 

histone methylation. We therefore examined the impact of 

 Figure 2.      Increased  l -2HG is associated with loss of 5hmC in RCC. A, validation of ELISA for 5hmC. HEK293 cells were transiently transfected with 
plasmids expressing control vector (CV), TET1 wild-type catalytic domain (CD) or mutant catalytic domain (CM), or TET2 CD or TET2 CM. Cells were 
harvested and genomic DNA was examined to determine the 5hmC level. B, HK-2 renal epithelial cells were treated with  l -2HG octyl ester for 4 hours and 
assayed for 5hmC levels via ELISA. C, 5hmC levels were compared between normal and high– l -2HG RCC tumor samples by ELISA (top) and dot-blot assay 
(bottom). D, 5hmC levels in normal, low-2HG tumors, and high-2HG tumors were determined by ELISA. Error bars, SEM. *,  P  < 0.005; **,  P  < 0.05.   
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L2HGDH effects on histone methylation patterns. Stable 

expression of L2HGDH in both A498 and RXF393 cells 

led to reduced H3K27me3 and H3K9me3 levels, consistent 

with reduced  L -2HG levels and ensuing activation of histone 

demethylase activity ( Fig. 4E ). Collectively, these demonstrate 

that modulation of L2HGDH expression can impart effects 

on both DNA and histone modifi cations. Given the emerg-

ing role of epigenetic alterations in RCC, we examined the 

effects of L2HGDH expression on  in vitro  phenotypes. Nota-

bly, L2HGDH expression reduced proliferation and colony 

formation in A498 and RXF393 RCC cells ( Fig. 4F and G ).    

 DISCUSSION 
 Here, we observe elevation of  L -2HG in ccRCC, the most 

common RCC histologic subtype. We also demonstrate a 

novel mechanism for  L -2HG elevation via reduced mRNA 

and protein expression of L2HGDH in part due to loss 

of the  L2HGDH  gene. Previous studies demonstrate that 

elevated cellular levels of  L -2HG are present in an inborn 

error of metabolism that results from L2HGDH defi ciency 

( 13 ). Although rare, a signifi cant proportion of these patients 

develop tumors, suggesting a role for  L -2HG in carcinogenesis. 

In particular, L2HGDH defi ciency has been linked to brain 

tumors and Wilms’ tumor ( 15, 16 ). To the best of our knowl-

edge, this is the fi rst report to demonstrate specifi c elevation 

of the  L  enantiomer in cancer. This is in contrast to elevation 

of  D -2HG, which has been identifi ed in a growing list of can-

cers with  IDH  mutations. Notably, a recent study reported 

increased 2HG in breast cancers in the absence of  IDH  muta-

tions ( 17 ). However, the specifi c enantiomer was not reported. 

 Our data do not exclude alternative mechanisms for  L -2HG 

accumulation in ccRCC. Prior studies have demonstrated 

that “off-target” activity of malate dehydrogenase (MDH1/

MDH2) can convert 2-OG to  L -2HG ( 18 ). Substrates for this 

reaction include glucose and glutamic acid ( 19 ). It is well 

established that glutamine can be converted to glutamate (via 

glutaminases), which can eventually be converted to 2-OG. This 

is particularly relevant given recent studies by Wise and col-

leagues ( 20 ) demonstrating that HIF1α can  promote  modest 

 Figure 3.       L2HGDH  is reduced in RCC tumors and cell lines. A, the mRNA expression of  L2HGDH  in RCC lines relative to nontransformed renal epithelial 
cells (HK-2). B, the protein expression of L2HGDH in RCC lines relative to nontransformed renal epithelial cells. C and D,  L2HGDH  mRNA levels measured 
by real-time RT-PCR in normal, low– l -2HG tumor, and high– l -2HG tumor and plotted as a function of  l -2HG levels and graphically displayed. *,  P  < 0.001. 
E, high-2HG tumors and matched normal tissue were analyzed for L2HGDH protein levels by immunoblotting (T, RCC tumor; N, benign tissue). F, immuno-
histochemistry for L2HGDH in normal kidney and high– l -2HG tumor. Red and black arrows, proximal and distal tubular epithelial cells, respectively. 
G,  l -2HG levels were measured in A498 cells stably transduced with control vector and  L2HGDH  cDNA. H, analysis of TCGA data assessing the effects 
of copy loss on mRNA gene expression of  L2HGDH . LOH, loss of heterozygosity; RNA-seq, RNA sequencing. *,  P  < 0.0001.   
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increases in 2HG synthesis via IDH-mediated reductive 

carboxylation of glutamine-derived 2-OG. However, enan-

tiomeric resolution of 2HG was not performed in this study. 

Nevertheless, given recent studies on reductive glutamine 

metabolism in VHL-defi cient RCC cells (in which HIF is 

stabilized; refs.  21, 22 ), these alternative mechanisms warrant 

further investigation. 

 2HG is part of a growing list of small molecules referred to 

as oncometabolites, or small molecules with putative trans-

forming properties. Recent studies have linked  D -2HG to 

the promotion of leukemogenesis ( 23 ). In particular,  D -2HG 

promotes cytokine independence and blocks differentiation 

in hematopoietic cells. Mutations in tumors of  FH  and  SDH  

lead to elevated levels of fumarate and succinate, respectively, 

due to loss of enzymatic activity. Germline mutations of  FH  

predispose individuals to the development of renal cancer 

as well as cutaneous and uterine leiomyomas ( 24 ). Germline 

 SDHB  mutations have also been linked to renal cancer as well 

as pheochromocytomas and paragangliomas ( 25, 26 ). Hence, 

a notable fi nding is that all three metabolites are linked to 

RCC. 

 A unifying theme among these three oncometabolites 

is their ability to inhibit 2OGDs. Members include PHDs, 

5mC DNA hydroxylases (TET 1–3), and histone demethyl-

ases. Multiple studies have shown that fumarate, succinate, 

and 2HG can inhibit TET enzymatic activity ( 11 ,  27 ,  28 ). 

Consistent with these data, we identifi ed reduced 5hmC lev-

els in tumors with elevated 2HG. The fold changes of 2HG 

we have identifi ed in RCC are more modest relative to the 

2HG elevations noted in the context of  IDH  mutations. A 

prior study by Choi and colleagues ( 29 ) analyzed 2HG (both 

 D  and  L ) in  IDH -mutant tumors by the same methodology 

as our study. The reported range of  D -2HG in these tumors 

ranged from approximately 20 to 200 nmol/mg protein. 

 Figure 4.      Knockdown or ectopic expression of  L2HGDH  is associated with changes of intracellular  l -2HG concentration and DNA 5hmC level. siRNA 
to L2HGDH was cotransfected with the TET1 catalytic domain (CD) in HK-2 cells (A) and HEK293 cells (B). A noncoding scramble was used as a control 
siRNA (siControl). Mass spectrometry confi rmed raised 2HG with L2HGDH knockdown (left). Genomic DNA was also isolated to determine 5hmC level by 
ELISA (right). C, HEK293 cells were transiently cotransfected with the TET1 CD and either  L2HGDH  cDNA or control vector (CV). Cells were subsequently 
challenged for 4 hours with 1 mmol/L  l -2HG octyl ester. Metabolites were extracted for measurement of intracellular total 2HG level and analyzed by 
LC/MS (left). Genomic DNA was also isolated to determine 5hmC level by ELISA (right). Error bars, SD from at least two independent experiments. **,  P  < 
0.005; *,  P  < 0.05. D, 5hmC dot-blot assay in A498 cells ± L2HGDH cDNA. Methylene blue blot is included for loading control. E, histone immunoblotting in 
A498 and RXF393 cells ±  L2HGDH  cDNA. F and G, proliferation and colony formation assays in RCC cells ±  L2HGDH  cDNA.   
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We identifi ed multiple tumors with  L -2HG levels within 

10-fold of  IDH -mutant tumors. Notably, prior studies have 

demonstrated that the  L  enantiomer of 2HG is a far more 

potent inhibitor of 2OGDs (including TETs) than the  D  

enantiomer ( 11, 12 ,  27 ). 

 Given the multiple 2OGDs, it may be diffi cult to discern 

which of these are signifi cant from a tumorigenic stand-

point. Several lines of evidence suggest the importance of 

2-OGDs relating to histone and DNA biology in kidney 

cancer. Recurrent mutations of  UTX , which encodes an 

H3K27 demethylase that requires 2-OG, have been found in 

RCC ( 30 ). In addition, recent studies demonstrate increased 

expression of the catalytic subunit of the polycomb repres-

sive complex 2 (PRC2), enhancer of zeste homologue 2 

(EZH2), in ccRCC ( 31, 32 ). The PRC2 promotes H3K27 

methylation. Our fi ndings demonstrate that reexpression 

of L2HGDH in RCC cells reduces H3K27 methylation. Col-

lectively, these data strongly suggest the importance of this 

histone mark in renal carcinogenesis. A notable fi nding from 

two independent studies in AML is that  TET2  mutations are 

mutually exclusive from  IDH  mutations ( 10 ,  33 ). The com-

mon link between these two seemingly unrelated mutations 

is their effect on TET enzymatic activity—through either 

loss-of-function mutations ( TET2  mutations) or, in the case 

of  IDH  mutation, 2HG-mediated inhibition of TET enzy-

matic activity through competition with the cofactor 2-OG. 

As noted, mutations of  TET2  have been identifi ed in myeloid 

disorders such as AML and glioma. Notably, recent deep-

sequencing efforts on RCC have identifi ed  TET2  mutations 

in RCC ( 34 ). However, whether these mutants result in loss 

of function with effects on 5hmC levels has not been deter-

mined. In addition, reduced expression of TET enzymes has 

been demonstrated in a variety of tumors ( 7, 8 ). Correspond-

ingly, reduced levels of 5hmC have been identifi ed in cancer 

as well ( 7, 8 ). Given these data,  L -2HG likely has multiple 

biologically relevant 2-OGD targets. 

 As noted previously, the TETs promote the conversion of 

5mC to 5hmC, which is currently thought to promote DNA 

demethylation. Hence, it might be expected that loss of TET 

activity, due to either mutation or inhibition, would result 

in DNA hypermethylation. However, the reported effects 

on global DNA methylation in the context of  TET2  muta-

tions in myeloid disorders have been confl icting ( 10 ,  35 ). 

Alternatively, 5hmC may represent its own epigenetic mark 

with specifi c effects on gene expression, perhaps through 

the recruitment of specifi c transcriptional regulators. These 

data point to the complexity of 5hmC biology and the need 

for further studies clarifying the mechanisms by which this 

DNA modifi cation affects gene methylation, regulation, and 

expression in the setting of elevated  L -2HG. 

 In summary, our data demonstrate elevated levels of 2HG, 

specifi cally the  L  enantiomer, in RCC. We show that 2HG ele-

vation is associated with loss of 5hmC levels in RCC samples 

and that these changes are mediated by the reduced expres-

sion of L2HGDH. Specifi cally, we identify the fi rst putative 

oncometabolite in the most common form of kidney cancer 

and its effects on the epigenetic landscape. Our data add to 

the growing body of evidence demonstrating the interplay 

between intermediary metabolism and nucleic acid biology 

in cancer.   

 METHODS  
  Plasmids  

 Expression plasmids of FLAG-tagged TET1 CD, TET1 CM, TET2 

CD, and TET2 CM were kindly provided by Dr. Yi Zhang through 

Addgene. The  L2HGDH  expression plasmid pcDNA3.1-L2HGDH was 

constructed by cloning the full-length human  L2HGDH  cDNA amplifi ed 

from human kidney epithelial HK-2 cells into pcDNA3.1 using primers 

5′-TTTGAATTCATGGTGCCAGCGCTGCGTTAT-3′ and 5′-TTTGG

TACCTTATAATTCAAATCTTTGTTGTACTTCATCTGCAATC-3′.   

  Cell Culture and Transfection  
 All lines were acquired from the ATCC, except RXF-393 (NCI), 

HRE152 (J.A. Copland, Mayo Clinic, Jacksonville, FL), and RCC4 

(P. Ratcliffe, University of Oxford, Oxford, UK) . Cell lines were 

periodically tested for  Mycoplasma . No other authentication was per-

formed. For transient transfection in HEK293, cells were transfected 

using Lipofectamine 2000 (Invitrogen) and calcium phosphate 

methods for RNA interference and cDNA expression, respectively. 

For  L2HGDH  knockdown in HK-2 cells, cells were transfected with 

pooled siRNA reagent (Thermo Fisher) using the Amaxa 4D Nucleo-

fector 4D nucleofector (Lonza) system according to the manufac-

turer’s protocol. A nontargeting scramble siRNA pool was used as a 

negative control (Thermo Fisher).   

  RNA Extraction and Quantitative RT-PCR  
 Total RNA from RCC patient samples and RCC cell lines was 

extracted with TRizol (Invitrogen). cDNA was generated using 

the VILO RT Kit (Invitrogen) and then used as a template for the 

 L2HGDH  Taqman expression assay probe (Applied Biosystems). 

Ribosomal protein ( RPLP0 ) was used to normalize data in tissue 

samples. For cell line analysis,  L2HGDH  mRNA expression level 

was quantifi ed by using 2 −ΔΔCT  method normalized to  GAPDH . For 

tissues, the Δ C t    L2HGDH  ( C t    L2HGDH  −  C t    RPLP0 ) was measured 

for normal tissue, low– L -2HG, and high– L -2HG tumor. Multi-

variate analyses of variance (MANOVA) followed by ANOVA were 

conducted in SAS Version 9.3 to compare the expression level (Δ C t   

 L2HGDH ) between the three groups. We used SAS GLM contrast 

to compare the High group with the others (Normal and Low). 

 L -2HG values were log-transformed to meet the assumptions for 

parametric tests.   

  Quantitative 5-hydroxymethylation (5-hmC) Analysis  
 For  DNA dot blotting, genomic DNA was denatured, serially 

diluted in NaOH/EDTA solution, and spotted on positively charged 

Nylon membranes (Roche Applied Science). The membrane was cross-

linked (UVP) and then blocked with 5% milk in TBST for 30 minutes, 

followed by incubation with the anti–5-hmC antibody (Active Motif) 

overnight at 4°C and horseradish peroxidase (HRP)-conjugated anti-

rabbit IgG secondary antibody for 1 hour at room temperature. After 

washing three times with TBST, the membrane was treated with 

enhanced chemiluminescence reagent and scanned. For quantitation 

of 5hmC, Quest 5-hmC DNA ELISA kits (Zymo Research) were used 

following the manufacturer’s protocol. Briefl y, the bottom of the well 

was coated with anti–5-hydroxymethylcytosine polyclonal antibody, 

and the denatured 100 ng genomic DNA was added. To detect DNA 

bound to the anti–5-hmC pAb, anti-DNA HRP antibody and HRP 

developer were applied. Greenish-blue color was analyzed in the wells 

by a plate reader at 405- to 450-nm detection.   

  Metabolite Extraction and Chromatography/Mass 
Spectrometry of  2 HG  

 For GC/MS and LC/MS analysis of tissues, human kidney sam-

ples, including normal and RCC, were extracted and prepared for 

Research. 
on September 26, 2018. © 2014 American Association for Cancercancerdiscovery.aacrjournals.org Downloaded from 

Published OnlineFirst September 2, 2014; DOI: 10.1158/2159-8290.CD-13-0696 

http://cancerdiscovery.aacrjournals.org/


 NOVEMBER  2014�CANCER DISCOVERY | 1297 

Elevated 2-Hydroxyglutarate in Kidney Cancer RESEARCH BRIEF

analysis as described in the Supplementary Methods and as previ-

ously described ( 36 ). 

 For 2HG enantiomer analysis (i.e.,  D -2HG and  L -2HG quantifi ca-

tion), samples were analyzed as previously described ( 37 ). Briefl y, 

extracts were derivatized with DATAN (diacetyl- L -tartaric acid), 

which permits enantiomeric analysis, followed by LC-MS/MS analy-

sis and normalized to protein levels. 

 For total 2HG ( D -2HG +  L -2HG) measurement of samples from 

 in vitro  studies, cell pellets were washed in 1× PBS three times and 

extracted with 10% cold trichloroacetic acid (TCA), and precipi-

tate was removed by centrifugation. TCA in the supernatant was 

removed by vortexing with four volumes of 1,1,2-trichlorotrifl uor-

oethane (FREON)-trioctylamine (Sigma) mixture, and the upper 

aqueous layer was collected for analysis after centrifugation. Sam-

ples were analyzed by ion chromatography coupled with negative 

electrospray mass spectrometry (RFIC-MS; Dionex), and 2HG was 

determined by selected ion monitoring (SIM 147.1). 2HG in cell 

extracts was quantifi ed by using a calibration curve of 2HG and 

normalized to protein content. Unless otherwise noted, 2HG refers 

to total levels ( D  +  L ).   

  Statistical Analysis  
 Unless otherwise noted, statistical analyses were carried out using 

the program “R” and Microsoft Excel software. Comparisons between 

groups for statistical signifi cance were performed with a two-tailed 

paired  t  test and ANOVA. A  P  value of <0.05 was considered statisti-

cally signifi cant in all cases.    
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